dice.camp is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon server for RPG folks to hang out and talk. Not owned by a billionaire.

Administered by:

Server stats:

1.5K
active users

#categorytheory

1 post1 participant0 posts today
HoldMyTypeExample: is is{{{5^5 } ^5 }^5 }^5 a natural number? It is not of the form 0 or Suc(0), or Suc(Suc(0)), ... We need to use induction to show that this is a natural number.
Sjoerd Visscher<p>I believe proarrow equipments are a great setting to study optics in. You can see the expression for optics and the equivalent string diagram below.</p><p>The string diagram even looks like it's just a schematic drawing of an optic, but it really contains all the required information! The arrow heads indicate that s, t, a and b are all tight arrows, but in the loose direction.</p><p>If you specialize to the proarrow equipment of functors and profunctors and simplify, you get the final expression. And if you then make S and T constant functors, and A and B monoidal actions, you get back mixed optics.</p><p><a href="https://types.pl/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://types.pl/tags/optics" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>optics</span></a></p>
José A. Alonso<p>Readings shared July 4, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/07/05-readings_shared_07-04-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/07/05-readings_shared_07-04-25</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://mathstodon.xyz/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/IsabelleHOL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IsabelleHOL</span></a> <a href="https://mathstodon.xyz/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rust</span></a> <a href="https://mathstodon.xyz/tags/TypeTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TypeTheory</span></a></p>
Programming Languages Delft<p>"2-Functoriality of Initial Semantics, and Applications" by Benedikt Ahrens, Ambroise Lafont, and Thomas Lamiaux was accepted at <a href="https://akademienl.social/tags/icfp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>icfp</span></a> </p><p>"We provide tools to compare and relate the models obtained from a signature for different choices of monoidal category [..] we use our results to relate the models of the different implementation [..] and to provide a generalized recursion principle for simply-typed syntax."</p><p>Read it on <a href="https://akademienl.social/tags/arXiv" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arXiv</span></a>: <a href="https://arxiv.org/abs/2503.10863" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">arxiv.org/abs/2503.10863</span><span class="invisible"></span></a></p><p><a href="https://akademienl.social/tags/TypeTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TypeTheory</span></a> <a href="https://akademienl.social/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a></p>
Counting Is Hard<p><a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a></p>
Counting Is Hard<p>Thanks to the work of <span class="h-card" translate="no"><a href="https://mastodon.acm.org/@mspstrath" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>mspstrath</span></a></span> all the TYPES 2025 talks are available (including mine)</p><p><a href="https://www.youtube.com/watch?v=W-lYwG3E_x4&amp;list=PLjPpkiIsfkBP2Iarv-Zvd7QS7WrGcDqem&amp;index=80" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=W-lYwG3E_x</span><span class="invisible">4&amp;list=PLjPpkiIsfkBP2Iarv-Zvd7QS7WrGcDqem&amp;index=80</span></a></p><p>Like comment and subscribe, ring the bell, all that stuff</p><p><a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a></p>
Thomas<p>Robert Rosen's approach of grounding formalization in science in the ultimate formalization, math, is as self-similar as thinking about thought.</p><p>His use of "category theory" provides a mathematical analogy to analogies.</p><p>I must confess that I need a lot of time to understand his writings - I keep learning new things every time I read it again.</p><p><a href="https://mas.to/tags/RobertRosen" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RobertRosen</span></a> <a href="https://mas.to/tags/Formalization" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Formalization</span></a> <a href="https://mas.to/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a></p>
Counting Is Hard<p>Too late to add this meme to my talk for types</p><p><a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/memes" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>memes</span></a></p>
José A. Alonso<p>Readings shared June 9, 2025. <a href="https://jaalonso.github.io/vestigium/posts/2025/06/09-readings_shared_06-09-25" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">jaalonso.github.io/vestigium/p</span><span class="invisible">osts/2025/06/09-readings_shared_06-09-25</span></a> <a href="https://mathstodon.xyz/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://mathstodon.xyz/tags/AIforMath" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AIforMath</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://mathstodon.xyz/tags/FunctionalProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FunctionalProgramming</span></a> <a href="https://mathstodon.xyz/tags/Haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Haskell</span></a> <a href="https://mathstodon.xyz/tags/ITP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ITP</span></a> <a href="https://mathstodon.xyz/tags/IsabelleHOL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>IsabelleHOL</span></a> <a href="https://mathstodon.xyz/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> <a href="https://mathstodon.xyz/tags/LeanProver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LeanProver</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/LogicProgramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LogicProgramming</span></a> <a href="https://mathstodon.xyz/tags/Math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Math</span></a> <a href="https://mathstodon.xyz/tags/Prolog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Prolog</span></a> <a href="https://mathstodon.xyz/tags/Rust" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Rust</span></a></p>
Counting Is Hard<p>As promised. Here is the sequel to my Weihrauch reductions are Containers post, this time relating strong reductions to dependent adaptors. Enjoy!</p><p><a href="https://www.countingishard.org/blog/strong-reducibility-as-an-adaptor" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">countingishard.org/blog/strong</span><span class="invisible">-reducibility-as-an-adaptor</span></a></p><p><a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/computability" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computability</span></a></p>
Ramin Honary<p><span class="h-card"><a class="u-url mention" href="https://chaos.social/@das_g" rel="nofollow noopener" target="_blank">@<span>das_g</span></a></span> True. It is certainly magical that there is a programming language which defines a state monad called “IO” (or sometimes “Effect”) which carries around with it a symbol of the <strong>entire Real World</strong> in order to model the idea that any evaluation of a function of that type of monad may (or may not) create a change somewhere out in the real world, as opposed to “pure” functions which can only ever manipulate the stack.</p><p><a class="hashtag" href="https://fe.disroot.org/tag/tech" rel="nofollow noopener" target="_blank">#tech</a> <a class="hashtag" href="https://fe.disroot.org/tag/software" rel="nofollow noopener" target="_blank">#software</a> <a class="hashtag" href="https://fe.disroot.org/tag/haskell" rel="nofollow noopener" target="_blank">#Haskell</a> <a class="hashtag" href="https://fe.disroot.org/tag/programminglanguage" rel="nofollow noopener" target="_blank">#ProgrammingLanguage</a> <a class="hashtag" href="https://fe.disroot.org/tag/typetheory" rel="nofollow noopener" target="_blank">#TypeTheory</a> <a class="hashtag" href="https://fe.disroot.org/tag/categorytheory" rel="nofollow noopener" target="_blank">#CategoryTheory</a></p>
HoldMyTypeWhat is negation? hint- there s more to it than meet the eye
DarthVi<p>I've been reading "Category Theory Illustrated" by Jencel Panic (more about it here <a href="https://abuseofnotation.github.io/category-theory-illustrated/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">abuseofnotation.github.io/cate</span><span class="invisible">gory-theory-illustrated/</span></a>).</p><p>I am reading about functors, but I wanted to share some screenshots about the Curry-Howard Isomorphism.</p><p><a href="https://hachyderm.io/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://hachyderm.io/tags/CurryHowardIsomorphism" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CurryHowardIsomorphism</span></a></p>
José A. Alonso<p>Introducing category theory (Version 26 Apr 2025). ~ Peter Smith. <a href="https://www.logicmatters.net/resources/pdfs/SmithCat.pdf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">logicmatters.net/resources/pdf</span><span class="invisible">s/SmithCat.pdf</span></a> <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a></p>
Jencel Panic<p>A <a href="https://mathstodon.xyz/tags/monad" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>monad</span></a> is when you know how to convert $M (M a)$ to $M a$, but not $M a$ to $a$.</p><p><a href="https://mathstodon.xyz/tags/haskell" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>haskell</span></a> <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a> <a href="https://mathstodon.xyz/tags/functionalprogramming" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>functionalprogramming</span></a></p>
2something<p><span>The set of all sets that are not big enough to trigger Russell's Paradox.<br><br><br>Okay that sounds like a joke, but I have a clear memory of my algebra professor in undergrad saying "If you have a large category, you can always shrink it to a small category that includes all the objects you care about."<br><br>Unless you're a foundations creature, in which case the objects you care about might include sets or categories which are big enough to cause trouble.<br><br></span><a href="https://transfem.social/tags/SetTheory" rel="nofollow noopener" target="_blank">#SetTheory</a> <a href="https://transfem.social/tags/CategoryTheory" rel="nofollow noopener" target="_blank">#CategoryTheory</a> <a href="https://transfem.social/tags/Math" rel="nofollow noopener" target="_blank">#Math</a></p>
2something<p><span>The GNU project claims their software is "free," but I have never seen a proof that GNU Sed is a free object in the category of software.<br><br></span><a href="https://transfem.social/tags/CategoryTheory" rel="nofollow noopener" target="_blank">#CategoryTheory</a> <a href="https://transfem.social/tags/GNU" rel="nofollow noopener" target="_blank">#GNU</a></p>
Programming Languages Delft<p>Master thesis by Niyousha Najmaei: "The Internal Language of Comprehension Categories"</p><p>"[..] we propose a candidate type theory for the internal language of comprehension categories by extracting a type theory from the semantics given by a general comprehension category which is not full and split. We also give an interpretation of this type theory in every comprehension category."</p><p><a href="https://repository.tudelft.nl/record/uuid:39e79d29-122c-4b54-827f-fd9908495e17" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">repository.tudelft.nl/record/u</span><span class="invisible">uid:39e79d29-122c-4b54-827f-fd9908495e17</span></a></p><p><a href="https://akademienl.social/tags/TypeTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>TypeTheory</span></a> <a href="https://akademienl.social/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> <a href="https://akademienl.social/tags/MLTT" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MLTT</span></a> <a href="https://akademienl.social/tags/thesis" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>thesis</span></a></p>
Tom de Jong<p>Many thanks to everyone who attended and made this an amazing day of <a href="https://mathstodon.xyz/tags/logic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>logic</span></a>, <a href="https://mathstodon.xyz/tags/computabilitytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>computabilitytheory</span></a> and <a href="https://mathstodon.xyz/tags/categorytheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>categorytheory</span></a>!</p><p>Recordings and slides will be available on the website sometime next week (hopefully)!</p>
amen zwa, esq.<p>I have a quick question, <span class="h-card" translate="no"><a href="https://mathstodon.xyz/@Joshua" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>Joshua</span></a></span>. Are you guys teaching <a href="https://mathstodon.xyz/tags/CategoryTheory" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CategoryTheory</span></a> alongside Computability and Complexity to the undergrad <a href="https://mathstodon.xyz/tags/CS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CS</span></a> these days?</p><p>In my days, Categories were taught only as beginning grad subject. But kids these days are scary smart, so....</p>