dice.camp is one of the many independent Mastodon servers you can use to participate in the fediverse.
A Mastodon server for RPG folks to hang out and talk. Not owned by a billionaire.

Administered by:

Server stats:

1.7K
active users

#fluiddynamics

3 posts3 participants0 posts today
Nicole Sharp<p><strong>Creating Liquid Landscapes</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro4.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro5.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/nis_intro6.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Artist <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">Roman De Giuli</a> excels at creating what appear to be vast landscapes carved by moving water. In reality, these pieces are small-scale flows, created on paper. Now, De Giuli takes us behind the scenes to see how he creates these masterpieces — layering, washing, burning, and repeating to build up the paperscape that eventually hosts the flows we see recorded. The work is meticulous and slow, and the results are incredible. De Giuli’s videos never fail to transport me to a calmer, more pristine version of our world. I can’t wait to see the new series! (Video and image credit: <a href="https://www.terracollage.com/" rel="nofollow noopener noreferrer" target="_blank">R. De Giuli</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>On the Mechanics of Wet Sand</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/sandholes3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Sand is a critical component of many built environments. As most of us learn (via sand castle), adding just the right amount of water allows sand to be quite strong. But with too little water — or too much — sand is prone to collapse. For those of us outside the construction industry, we’re most likely to run into this problem on the beach while digging holes in the sand. In this Practical Engineering video, Grady explains the forces that stabilize and destabilize piled sand and where the dangers of excavation lie. (Video and image credit: Practical Engineering)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/civil-engineering/" target="_blank">#civilEngineering</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material/" target="_blank">#granularMaterial</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/granular-material-2/" target="_blank">#granularMaterial_</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/infrastructure/" target="_blank">#infrastructure</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/shear/" target="_blank">#shear</a></p>
Nicole Sharp<p><strong>Seeking Uranus’s Spin</strong></p><p>Uranus is one of our solar system’s oddest planets. An ice giant, it spins on its side. We originally estimated its rate of rotation using measurements from Voyager 2, the only spacecraft to have visited the planet. But that measurement was so imprecise that within two years, astronomers could no longer use it to predict where the planet’s poles were. Now a <a href="https://www.nature.com/articles/s41550-025-02492-z" rel="nofollow noopener noreferrer" target="_blank">new study</a>, drawing on over a decade of Hubble observations of Uranus’s auroras, has pinned down the planet’s rotation rate far more precisely: 17 hours, 14 minutes, and 52 seconds. While that’s within the original measurement’s 36-second margin of error, the new measurement has a margin of error of only 0.036 seconds. In addition to helping plan a theoretical future Uranus mission, this more accurate rotation rate allows researchers to reexamine decades of data, now with certainty about the planet’s orientation at the time of the observation. (Image credit: ESA/Hubble, NASA, L. Lamy, L. Sromovsky; research credit: <a href="https://www.nature.com/articles/s41550-025-02492-z" rel="nofollow noopener noreferrer" target="_blank">L. Lamy et al.</a>; via <a href="https://gizmodo.com/a-long-held-assumption-about-uranus-just-got-upended-2000586293?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/aurora/" target="_blank">#aurora</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/uranus/" target="_blank">#Uranus</a></p>
Nicole Sharp<p><strong>Martian Mud Volcanoes</strong></p><p>Mars features mounds that resemble our terrestrial <a href="https://en.wikipedia.org/wiki/Mud_volcano" rel="nofollow noopener noreferrer" target="_blank">mud volcanoes</a>, suggesting that a similar form of mudflow occurs on Mars. But Mars’ thin atmosphere and frigid temperatures mean that water — a prime ingredient of any mud — is almost always in either solid or gaseous form on the planet. So <a href="https://doi.org/10.1038/s43247-025-02110-w" rel="nofollow noopener noreferrer" target="_blank">researchers explored</a> whether salty muds could flow under Martian conditions. They tested a variety of salts, at different concentrations, in a low-pressure chamber calibrated to Mars-like temperatures and pressures. The salts lowered water’s freezing point, allowing the muds to remain fluid. Even a relatively small amount of sodium chloride — 2.5% by weight — allowed muds to flow far. The team also found that the salt content affected the shape the flowing mud took, with flows ranging from narrow, ropey patterns to broad, even sheets. (Image credit: <a href="https://commons.wikimedia.org/wiki/File:Gryphons_at_the_central_crater_of_the_Dashgil_mud_volcano_in_Azerbaijan_(130).JPG" rel="nofollow noopener noreferrer" target="_blank">P. Brož/Wikimedia Commons</a>; research credit: <a href="https://doi.org/10.1038/s43247-025-02110-w" rel="nofollow noopener noreferrer" target="_blank">O. Krýza et al.</a>; via <a href="https://eos.org/articles/salt-may-be-key-to-martian-mudflows?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mars/" target="_blank">#Mars</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud/" target="_blank">#mud</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud-pots/" target="_blank">#mudPots</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/mud-volcano/" target="_blank">#mudVolcano</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/viscous-flow/" target="_blank">#viscousFlow</a></p>
Nicole Sharp<p><strong>Quietening Drones</strong></p><p>A drone’s noisiness is one of its major downfalls. Standard drones are obnoxiously loud and disruptive for both humans and animals, one reason that they’re not allowed in many places. This flow visualization, <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">courtesy of the Slow Mo Guys</a>, helps show why. The image above shows a standard off-the-shelf drone rotor. As each blade passes through the smoke, it sheds a wingtip vortex. (Note that these vortices are constantly coming off the blade, but we only see them where they intersect with the smoke.) As the blades go by, a constant stream of regularly-spaced vortices marches downstream of the rotor. This regular spacing creates the dominant acoustic frequency that we hear from the drone.</p> Animation of wingtip vortices coming off a drone rotor with blades of different lengths. This causes interactions between the vortices, which helps disrupt the drone’s noise. <p>To counter that, the company Wing uses a rotor with blades of different lengths (bottom image). This staggers the location of the shed vortices and causes some later vortices to spin up with their downstream neighbor. These interactions break up that regular spacing that generates the drone’s dominant acoustic frequency. Overall, that makes the drone sound quieter, likely without a large impact to the amount of lift it creates. (Image credit: <a href="https://www.youtube.com/watch?v=5yaAFLpLmVg" rel="nofollow noopener noreferrer" target="_blank">The Slow Mo Guys</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/acoustics/" target="_blank">#acoustics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller/" target="_blank">#propeller</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/propeller-vortex/" target="_blank">#propellerVortex</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/wingtip-vortices/" target="_blank">#wingtipVortices</a></p>
Nicole Sharp<p><strong>Climate Change and the Equatorial Cold Tongue</strong></p><p>A cold region of Pacific waters stretches westward along the equator from the coast of Ecuador. Known as the equatorial cold tongue, this region exists because trade winds push surface waters away from the equator and allow colder, deeper waters to surface. Previous climate models have predicted warming for this region, but instead we’ve observed cooling — or at least a resistance to warming. <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Now researchers</a> using decades of data and new simulations report that the observed cooling trend is, in fact, a result of human-caused climate changes. Like the cold tongue itself, this new cooling comes from wind patterns that change ocean mixing.</p><p>As pleasant as a cooling streak sounds, this trend has unfortunate consequences elsewhere. Scientists have found that this cooling has a direct effect on drought in East Africa and southwestern North America. (Image credit: J. Shoer; via <a href="https://physics.aps.org/articles/v18/21?utm_campaign=weekly&amp;utm_medium=email&amp;utm_source=emailalert&amp;__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">APS News</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Matt<p>The first law of Fluid Dynamics:</p><p>If you walk too quickly, you WILL spill your drink.</p><p><a href="https://mas.to/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a></p>
Nicole Sharp<p><strong>Hot Droplets Bounce</strong></p><p>In the Leidenfrost effect, room-temperature droplets bounce and skitter off a surface much hotter than the drop’s boiling point. With those droplets, a layer of vapor cushions them and insulates them from the hot surface. In today’s study, researchers instead used hot or burning drops (above) and observed how they impact a room-temperature surface. While room-temperature droplets hit and stuck (below), hot and burning droplets bounced (above).</p><p>In this case, the cushioning air layer doesn’t come from vaporization. Instead, the bottom of the falling drop cools faster than the rest of it, increasing the local surface tension. That increase in surface tension creates a Marangoni flow that pulls fluid down along the edges of the drop. That flow drags nearby air with it, creating the cushioning layer that lets the drop bounce. In this case, the authors called the phenomenon “self-lubricating bouncing.” (Image and research credit: <a href="https://doi.org/10.1016/j.newton.2025.100014" rel="nofollow noopener noreferrer" target="_blank">Y. Liu et al.</a>; via <a href="https://arstechnica.com/science/2025/03/these-hot-oil-droplets-can-bounce-off-any-surface/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p> <p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bouncing-droplets/" target="_blank">#bouncingDroplets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/droplet-impact/" target="_blank">#dropletImpact</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/entrainment/" target="_blank">#entrainment</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/marangoni-effect/" target="_blank">#marangoniEffect</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Bifurcating Waterways</strong></p><p>Your typical river has a single water basin and drains along a river or two on its way to the sea. But there are a handful of rivers and lakes that don’t obey our usual expectations. Some rivers flow in two directions. Some lakes have multiple outlets, each to a separate water basin. That means that water from a single lake can wind up in two entirely different bodies of water.</p><p>The most famous example of these odd waterways is South America’s Casiquiare River, seen running north to south in the image above. This navigable river connects the Orinoco River (flowing east to west in this image) with the Rio Negro (not pictured). Since the Rio Negro eventually joins the Amazon, the Casiquiare River’s meandering, nearly-flat course connects the continent’s two largest basins: the Orinoco and the Amazon.</p><p>For more strange waterways across the Americas, check out <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">this review paper</a>, which describes a total of 9 such hydrological head-scratchers. (Image credit: <a href="https://www.flickr.com/photos/observacao-da-terra/31909257768/" rel="nofollow noopener noreferrer" target="_blank">Coordenação-Geral de Observação da Terra/INPE</a>; research credit: <a href="https://doi.org/10.1029/2024WR039824" rel="nofollow noopener noreferrer" target="_blank">R. Sowby and A. Siegel</a>; via <a href="https://eos.org/research-spotlights/the-rivers-that-science-says-shouldnt-exist?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Eos</a>)</p><p></p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rivers/" target="_blank">#rivers</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/surface-hydrology/" target="_blank">#surfaceHydrology</a></p>
UK<p><a href="https://www.europesays.com/uk/39984/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">europesays.com/uk/39984/</span><span class="invisible"></span></a> Physicists Have Unlocked the Secret to the Perfect Cup of Coffee, While Using Fewer Beans <a href="https://pubeurope.com/tags/coffee" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>coffee</span></a> <a href="https://pubeurope.com/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://pubeurope.com/tags/PerfectCup" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PerfectCup</span></a> <a href="https://pubeurope.com/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://pubeurope.com/tags/Science" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Science</span></a> <a href="https://pubeurope.com/tags/UK" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UK</span></a> <a href="https://pubeurope.com/tags/UnitedKingdom" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UnitedKingdom</span></a> <a href="https://pubeurope.com/tags/UniversityOfPennsylvania" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>UniversityOfPennsylvania</span></a></p>
Nicole Sharp<p><strong>Inside an Alien Atmosphere</strong></p><p>Studying the physics of planetary atmospheres is challenging, not least because we only have a handful of examples to work from in our own solar system. So it’s exciting that <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">researchers have unveiled</a> our first look at the 3D structure of an exoplanet‘s atmosphere. </p><p>Using ground-based observations, researchers studied WASP-121b, also known as Tylos, an ultra-hot Jupiter that circles its star in only 30 Earth hours. One face of the planet always faces its star while the other faces into space. The team found that the exoplanet has a flow deep in the atmosphere that carries iron from the hot daytime side to the colder night side. Higher up, the atmosphere boasts a super-fast jet-stream that doubles in speed (from an estimated 13 kilometers per second to 26 kilometers per second) as it crosses from the morning terminator to the evening. As one researcher observed, the planet’s everyday winds make Earth’s worst hurricanes look tame. (Image credit: <a href="https://www.eso.org/public/images/eso2504b/" rel="nofollow noopener noreferrer" target="_blank">ESO/M. Kornmesser</a>; research credit: <a href="https://doi.org/10.1038/s41586-025-08664-1" rel="nofollow noopener noreferrer" target="_blank">J. Seidel et al.</a>; via <a href="https://gizmodo.com/first-3d-map-of-an-exoplanets-atmosphere-reveals-bizarre-weather-2000566049?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Gizmodo</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/astronomy/" target="_blank">#astronomy</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/exoplanets/" target="_blank">#exoplanets</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/planetary-science/" target="_blank">#planetaryScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Channeling Espresso</strong></p><p>Coffee-making continues to be a rich source for physics insight. The roasting and brewing processes are fertile ground for chemistry, physics, and engineering. Recently, one <a href="https://arstechnica.com/science/2025/03/the-physics-of-brewing-the-perfect-espresso/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">research group has focused</a> on the phenomenon of channeling, where water follows a preferred path through the coffee grounds rather than seeping uniformly through the grounds. Channeling reduces the amount of coffee extracted in the brew, which is both wasteful and results in a less flavorful cup. By uncovering what mechanics go into channeling, the group hopes to help baristas mitigate the undesirable process, creating a repeatable, efficient, and tasty espresso every time. (Image credit: <a href="https://unsplash.com/photos/person-holding-silver-steel-cup-sBS-Ufi0f1g" rel="nofollow noopener noreferrer" target="_blank">E. Yavuz</a>; via <a href="https://arstechnica.com/science/2025/03/the-physics-of-brewing-the-perfect-espresso/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">Ars Technica</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/coffee/" target="_blank">#coffee</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/cooking/" target="_blank">#cooking</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-flow/" target="_blank">#porousFlow</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/porous-media/" target="_blank">#porousMedia</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Steven Carneiro<p>Advancing mathematical physics for fluid motion:<br><a href="https://social.vivaldi.net/tags/fluiddynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>fluiddynamics</span></a> <a href="https://social.vivaldi.net/tags/motion" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>motion</span></a> <a href="https://social.vivaldi.net/tags/mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>mathematics</span></a> <a href="https://social.vivaldi.net/tags/physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>physics</span></a> <a href="https://social.vivaldi.net/tags/research" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>research</span></a><br>🤓</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/</span></a></p>
Nicole Sharp<p><strong>Flying Without a Rudder</strong></p><p>Aircraft typically use a vertical tail to keep the craft from rolling or yawing. Birds, on the other hand, maneuver their wings and tail feathers to counter unwanted motions. <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">Researchers found</a> that the list of necessary adjustments is quite small: just 4 for the tail and 2 for the wings. Implementing those 6 controllable degrees of freedom on their bird-inspired PigeonBot II allowed the biorobot to fly steadily, even in turbulent conditions, without a rudder. Adapting such flight control to the less flexible surfaces of a typical aircraft will take time and creativity, but the savings in mass and drag could be worth it. (Image credit: E. Chang/Lentink Lab; research credit: <a href="https://doi.org/10.1126/scirobotics.ado4535" rel="nofollow noopener noreferrer" target="_blank">E. Chang et al.</a>; via <a href="https://doi.org/10.1063/pt.usov.ggrh" rel="nofollow noopener noreferrer" target="_blank">Physics Today</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biorobotics/" target="_blank">#biorobotics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/bird-flight/" target="_blank">#birdFlight</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/birds/" target="_blank">#birds</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flight-control/" target="_blank">#flightControl</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/turbulence/" target="_blank">#turbulence</a></p>
Soh Kam Yung<p>"In the paper, the researchers suggest they have figured out how to unify three physical theories that explain the motion of fluids. [...] This breakthrough won’t change the theories themselves, but it mathematically justifies them and strengthens our confidence that the equations work in the way we think they do."</p><p><a href="https://www.scientificamerican.com/article/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">scientificamerican.com/article</span><span class="invisible">/lofty-math-problem-called-hilberts-sixth-closer-to-being-solved/</span></a></p><p><a href="https://mstdn.io/tags/Physics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Physics</span></a> <a href="https://mstdn.io/tags/Mathematics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Mathematics</span></a> <a href="https://mstdn.io/tags/FluidDynamics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>FluidDynamics</span></a> <a href="https://mstdn.io/tags/Equations" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Equations</span></a></p>
Nicole Sharp<p><strong>Salt Fingers</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/DDinsta3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Any time a fluid under gravity has areas of differing density, it convects. We’re used to thinking of this in terms of temperature — “hot air rises” — but temperature isn’t the only source of convection. Differences in concentration — like salinity in water — cause convection, too. This video shows a special, more complex case: what happens when there are <a href="https://en.wikipedia.org/wiki/Double_diffusive_convection" rel="nofollow noopener noreferrer" target="_blank">two sources of density gradient</a>, each of which diffuses at a different rate.</p><p>The classic example of this occurs in the ocean, where colder fresher water meets warmer, saltier water (and vice versa). Cold water tends to sink. So does saltier water. But since temperature and salinity move at different speeds, their competing convection takes on a shape that resembles dancing, finger-like plumes as seen here. (Video and image credit: <a href="https://doi.org/10.1103/APS.DFD.2024.GFM.V2677989" rel="nofollow noopener noreferrer" target="_blank">M. Mohaghar et al.</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/2024gofm/" target="_blank">#2024gofm</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-convection/" target="_blank">#doubleDiffusiveConvection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/double-diffusive-instability/" target="_blank">#doubleDiffusiveInstability</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/flow-visualization/" target="_blank">#flowVisualization</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/oceanography/" target="_blank">#oceanography</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Arctic Melt</strong></p><p>Temperatures in the Arctic are rising faster than elsewhere, triggering more and more melting. Photographer Scott Portelli captured a melting ice shelf protruding into the ocean in this aerial image. Across the top of the frozen landscape, streams and rivers cut through the ice, leading to waterfalls that flood the nearby ocean with freshwater. This meltwater will do more than raise ocean levels; it changes temperature and salinity in these regions, disrupting the convection that keeps our planet healthy. (Image credit: <a href="https://oceanographicmagazine.com/opa-winner/ocean-conservation-impact-photographer-of-the-year-2024-scopor3/" rel="nofollow noopener noreferrer" target="_blank">S. Portelli/OPOTY</a>; via <a href="https://www.thisiscolossal.com/2024/08/ocean-photographer-of-the-year-2024/" rel="nofollow noopener noreferrer" target="_blank">Colossal</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/climate-change/" target="_blank">#climateChange</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/convection/" target="_blank">#convection</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluids-as-art/" target="_blank">#fluidsAsArt</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/geophysics/" target="_blank">#geophysics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/melting/" target="_blank">#melting</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Atmospheric Rivers Raise Temperatures</strong></p><p>Atmospheric rivers are narrow streams of moisture-rich air running from tropical regions to mid- or polar latitudes. Though relatively short-lived, they are capable of carrying — and depositing — more water than the largest rivers. But <a href="https://doi.org/10.1038/s41586-024-08238-7" rel="nofollow noopener noreferrer" target="_blank">researchers have found</a> that their impact is not measured in water content alone. Instead, a survey of 43 years’ worth of data shows that atmospheric rivers also bring unusually warm temperatures. In some cases, the authors found surface temperatures near an atmospheric river climbed to as high as 15 degrees Celsius above the typical. On average, temperatures were about 5 degrees Celsius higher than expected for the region’s climate. </p><p>Several factors raise those temperatures — like the heat released when rising vapor meets cooler air and condenses into liquid — but the biggest effect came from carrying warm tropical temperatures to (usually) cooler regions. (Image credit: <a href="https://earthobservatory.nasa.gov/images/150804/atmospheric-river-lashes-california" rel="nofollow noopener noreferrer" target="_blank">L. Dauphin/NASA</a>; research credit: <a href="https://doi.org/10.1038/s41586-024-08238-7" rel="nofollow noopener noreferrer" target="_blank">S. Scholz and J. Lora</a>; via <a href="https://doi.org/10.1063/pt.ubik.ryhw" rel="nofollow noopener noreferrer" target="_blank">Physics Today</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-river/" target="_blank">#atmosphericRiver</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/atmospheric-science/" target="_blank">#atmosphericScience</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/meteorology/" target="_blank">#meteorology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/weather/" target="_blank">#weather</a></p>
Nicole Sharp<p><strong>Measuring Mucus by Dragging Dead Fish</strong></p><p>A fish‘s mucus layer is critical; it protects from pathogens, reduces drag in the water, and, in some cases, protects against predators. But little is known about how mucus could affect terrestrial locomotion in species like the northern snakehead, which can breathe out of the water and move across land. So researchers explored the snakehead’s mucus layer by measuring the force required to drag them (and two other non-terrestrial species) across different surfaces.</p><p>The team tested the same, freshly euthanized fish twice: once with its mucus layer intact and again once the mucus was washed off. Unsurprisingly, the fish’s friction was much lower with its mucus. But they also found that the snakehead was slipperier than either the scaled carp or the scale-free catfish. The biologists suggest that the snakehead could have evolved a slipperier mucus to help it move more easily on land, thereby extending the distance it can cover.</p><p>As a fluid dynamicist, I think fish mucus sounds like a great new playground for the rheologists among us. (Image and research credit: <a href="https://doi.org/10.1093/icb/icaf002" rel="nofollow noopener noreferrer" target="_blank">F. Lopez-Chilel and N. Bressman</a>; via <a href="https://www.popsci.com/environment/fish-mucus-study/?__readwiseLocation=" rel="nofollow noopener noreferrer" target="_blank">PopSci</a>)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/biology/" target="_blank">#biology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fish/" target="_blank">#fish</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/rheology/" target="_blank">#rheology</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a></p>
Nicole Sharp<p><strong>Chaotic Hose Instability</strong></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/chaos_hose1.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/chaos_hose2.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p><a class="" href="https://fyfluiddynamics.com/wp-content/uploads/chaos_hose3.png" rel="nofollow noopener noreferrer" target="_blank"></a></p> <p></p> <p>Steve Mould is back with another video looking at wild fluid behaviors. This time he’s considering hose instabilities like the one that makes a water-carrying hose beyond a certain length to whip wildly back and forth. He tries to track down the reasoning for these flexible hoses snapping and whipping. In truth, both the hoses and the wind dancers do their thing due to interactions between the elasticity of the hose and the fluid dynamics of the flows within. These applications are ripe for a few control volume thought experiments. (Video and image credit: S. Mould)</p><p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/chaos/" target="_blank">#chaos</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/elasticity/" target="_blank">#elasticity</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/fluid-dynamics/" target="_blank">#fluidDynamics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/physics/" target="_blank">#physics</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/science/" target="_blank">#science</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://fyfluiddynamics.com/tagged/solid-mechanics/" target="_blank">#solidMechanics</a></p>